On the karyotypic origin and evolution of cancer cells.

نویسندگان

  • Joshua M Nicholson
  • Peter Duesberg
چکیده

Cancers have clonal, aneuploid karyotypes that evolve ever more malignant phenotypes spontaneously. Because these facts are hard to explain by conventional mutation theory, we propose here a karyotypic cancer theory. According to this theory, carcinogens initiate carcinogenesis by inducing random aneuploidy. Aneuploidy then catalyzes karyotypic evolutions, because it destabilizes the karyotype by unbalancing teams of proteins that segregate, synthesize, and repair chromosomes. Sporadically, such evolutions generate new cancer-causing karyotypes, which are stabilized within narrow limits against the inherent instability of aneuploidy by selection for oncogenic function. Here we have tested this theory prospectively by analyzing the karyotypes of distinct tumorigenic clones, which arose from mass cultures of human cells within a few months after transfection with artificially activated oncogenes. All clones from the same parental cells had individual, "near-clonal" karyotypes and phenotypes, although the parental oncogenes were identical. The karyotypes of distinct tumors formed by a given clone in immunodeficient mice were variants of those of the input clones. The karyotypes of tumorigenic clones also evolved on passages in vitro, in which they acquired either enhanced tumorigenicity spontaneously or resistance against methotrexate upon selection. We conclude that activated oncogenes initiate carcinogenesis indirectly by inducing random aneuploidy, much like conventional carcinogens, but more effectively because the oncogenes are integrated into the genome. Since aneuploidy destabilizes the karyotype, such cells evolve new, cancer-specific karyotypes spontaneously, much like new species. Because individual karyotypes of tumorigenic clones correlate and coevolve with individual phenotypes, we conclude that specific karyotypes as a whole are the genomes of cancer cells. Owing to the flexibility of their aneuploid karyotypes, cancers evolve at rates that are roughly proportional to their degrees of aneuploidy. In sum, genomes consisting of individual and flexible karyotypes explain the characteristic individuality, stability, and flexibility of cancers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Karyotypic Study and Chromosome Evolution in Some Iranian Local Onion Populations

Abstract A karyotypic study was performed on 12 Iranian local onion (Allium cepa L.) populations. A number of mitotic cells at metaphase stage for each population were prepared. Chromosomes of suitable mitotic cells were counted and various parameters, including long arm (L), short arm (S), total length of chromosome (TL), relative length of chromosome (RL), arm ratio (AR), r-value, total chro...

متن کامل

Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?

The recent discovery of diverse very large viruses, such as the mimivirus, has fostered a profusion of hypotheses positing that these viruses define a new domain of life together with the three cellular ones (Archaea, Bacteria and Eucarya). It has also been speculated that they have played a key role in the origin of eukaryotes as donors of important genes or even as the structures at the origi...

متن کامل

Karyotypic Variation of the Aloe vera L. and Aloe littoralis Baker in Iran

Background: We describe karyotypic variations and the in vitro methods for plant propagation and conservation as well as detailed chromosomal analysis of (Aloe vera L.) and Aloe littoralis from Iran during flowering stage. Objectives: This karyotypic was discovered because of a difference in the position of the chromosome and due to genomic differentiation in domesticated pop...

متن کامل

Investigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data

Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...

متن کامل

Expression Pattern of Alternative Splicing Variants of Human Telomerase Reverse Transcriptase (hTERT) in Cancer Cell Lines Was not Associated with the Origin of the Cells

Telomerase and systems controlling their activity have been of great attention. There are controversies regarding the role of the alternative splicing forms of the human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase. Therefore, the correlation between telomerase enzyme activity, the abundance of alternatively spliced variants of hTERT and doubling time of a seri...

متن کامل

The Cancer Stem Cell Hypothesis in Oral Squamous Cell Carcinoma: A New Target for the Treatment

Within a single tumor clone, cells have significantly different abilities to proliferate and form new tumors. This has led to the hypothesis that most cells in a cancer have a limited ability to divide and only a small subset of distinct cells, the cancer stem cells (CSCs), has the capacity to self-renew and form new tumors . It has been proposed that the development of tumors is based exclusiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer genetics and cytogenetics

دوره 194 2  شماره 

صفحات  -

تاریخ انتشار 2009